Automated Seizure Onset Zone Approximation Based On Nonharmonic High-Frequency Oscillations In Human Interictal Intracranial Eegs

INTERNATIONAL JOURNAL OF NEURAL SYSTEMS(2015)

引用 33|浏览0
暂无评分
摘要
A novel automated algorithm is proposed to approximate the seizure onset zone (SOZ), while providing reproducible output. The SOZ, a surrogate marker for the epileptogenic zone (EZ), was approximated from intracranial electroencephalograms (iEEG) of nine people with temporal lobe epilepsy (TLE), using three methods: (1) Total ripple length (TRL): Manually segmented high-frequency oscillations, (2) Rippleness (R): Area under the curve (AUC) of the autocorrelation functions envelope, and (3) Autoregressive model residual variation (ARR, novel algorithm): Time-variation of residuals from autoregressive models of iEEG windows. TRL, R, and ARR results were compared in terms of separability, using Kolmogorov-Smirnov tests, and performance, using receiver operating characteristic (ROC) curves, to the gold standard for SOZ delineation: visual observation of ictal video-iEEGs. TRL, R, and ARR can distinguish signals from iEEG channels located within the SOZ from those outside it (p < 0.01). The ROC AUC was 0.82 for ARR, while it was 0.79 for TRL, and 0.64 for R. ARR outperforms TRL and R, and may be applied to identify channels in the SOZ automatically in interictal iEEGs of people with TLE. ARR, interpreted as evidence for nonharmonicity of high-frequency EEG components, could provide a new way to delineate the EZ, thus contributing to presurgical workup.
更多
查看译文
关键词
Seizure onset zone, high-frequency oscillations, epilepsy surgery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要