Optical design considerations for efficient light collection from liquid scintillation counters.

APPLIED OPTICS(2015)

Cited 4|Views10
No score
Abstract
Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation. For reliable operation, the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processing to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low-background liquid scintillation counters, additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material present in the laboratory and within the instrument's construction materials. Low-background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting (LSC) in a low-background shield. The basic approach to achieve both good light collection and a low-background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high-sensitivity LSC system.
More
Translated text
Key words
geometric optics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined