Solid state formulations composed by amphiphilic polymers for delivery of proteins: characterization and stability.

International journal of pharmaceutics(2015)

引用 26|浏览3
暂无评分
摘要
Nanocomposite powders composed by polymeric micelles as vehicles for delivery proteins were developed in this work, using insulin as model protein. Results showed that size and polydispersity of micelles were dependent on the amphiphilic polymer used, being all lower than 300 nm, while all the formulations displayed spherical shape and surface charge close to neutrality. Percentages of association efficiency and loading capacity up to 94.15 ± 3.92 and 8.56 ± 0.36, respectively, were obtained. X-ray photoelectron spectroscopy (XPS) measurements confirmed that insulin was partially present at the hydrophilic shell of the micelles. Lyophilization did not significantly change the physical characteristics of micelles, further providing easily dispersion when in contact to aqueous medium. The native-like conformation of insulin was maintained at high percentages (around 80%) after lyophilization as indicated by Fourier transform infrared spectroscopy (FTIR) and far-UV circular dichroism (CD). Moreover, Raman spectroscopy did not evidenced significant interactions among the formulation components. The formulations shown to be physically stable upon storage up to 6 months both at room-temperature (20 °C) and fridge (4 °C), with only a slight loss (maximum of 15%) of the secondary structure of the protein. Among the polymers tested, Pluronic(®) F127 produced the carrier formulations more promising for delivery of proteins.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要