Identification of metabolically stable 5'-phosphate analogs that support single-stranded siRNA activity.

Nucleic acids research(2015)

Cited 69|Views22
No score
Abstract
The ss-siRNA activity in vivo requires a metabolically stable 5'-phosphate analog. In this report we used crystal structure of the 5'-phosphate binding pocket of Ago-2 bound with guide strand to design and synthesize ss-siRNAs containing various 5'-phosphate analogs. Our results indicate that the electronic and spatial orientation of the 5'-phosphate analog was critical for ss-siRNA activity. Chemically modified ss-siRNA targeting human apoC III mRNA demonstrated good potency for inhibiting ApoC III mRNA and protein in transgenic mice. Moreover, ApoC III ss-siRNAs were able to reduce the triglyceride and LDL cholesterol in transgenic mice demonstrating pharmacological effect of ss-siRNA. Our study provides guidance to develop surrogate phosphate analog for ss-siRNA and demonstrates that ss-siRNA provides an alternative strategy for therapeutic gene silencing.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined