Chrome Extension
WeChat Mini Program
Use on ChatGLM

Functional differences between GDNF-dependent and FGF2-dependent mouse spermatogonial stem cell self-renewal.

Stem cell reports(2015)

Cited 133|Views14
No score
Abstract
Spermatogonial stem cells (SSCs) are required for spermatogenesis. Earlier studies showed that glial cell line-derived neurotrophic factor (GDNF) was indispensable for SSC self-renewal by binding to the GFRA1/RET receptor. Mice with mutations in these molecules showed impaired spermatogenesis, which was attributed to SSC depletion. Here we show that SSCs undergo GDNF-independent self-renewal. A small number of spermatogonia formed colonies when testis fragments from a Ret mutant mouse strain were transplanted into heterologous recipients. Moreover, fibroblast growth factor 2 (FGF2) supplementation enabled in vitro SSC expansion without GDNF. Although GDNF-mediated self-renewal signaling required both AKT and MAP2K1/2, the latter was dispensable in FGF2-mediated self-renewal. FGF2-depleted testes exhibited increased levels of GDNF and were enriched for SSCs, suggesting that the balance between FGF2 and GDNF levels influences SSC self-renewal in vivo. Our results show that SSCs exhibit at least two modes of self-renewal and suggest complexity of SSC regulation in vivo.
More
Translated text
Key words
stem cell,gdnf-dependent,self-renewal
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined