Sizing Extracellular Vesicles Using Membrane Dyes And A Single Molecule-Sensitive Flow Analyzer

ANALYTICAL CHEMISTRY(2021)

引用 10|浏览3
暂无评分
摘要
Extracellular vesicles (EVs) are membranous particles released by most cells in our body, which are involved in many cell-to-cell signaling processes. Given the nanometer sizes and heterogeneity of EVs, highly sensitive methods with single-molecule resolution are fundamental to investigating their biophysical properties. Here, we demonstrate the sizing of EVs using a fluorescence-based flow analyzer with single-molecule sensitivity. Using a dye that selectively partitions into the vesicle's membrane, we show that the fluorescence intensity of a vesicle is proportional to its diameter. We discuss the constraints in sample preparation which are inherent to sizing nanoscale vesicles with a fluorescent membrane dye and propose several guidelines to improve data consistency. After optimizing staining conditions, we were able to measure the size of vesicles in the range similar to 35-300 nm, covering the spectrum of EV sizes. Lastly, we developed a method to correct the signal intensity from each vesicle based on its traveling speed inside the microfluidic channel, by operating at a high sampling rate (10 kHz and measuring the time required for the particle to cross the laser beam. Using this correction, we obtained a threefold greater accuracy in EV sizing, with a precision of +/- 15-25%.
更多
查看译文
关键词
extracellular vesicles,membrane dyes,molecule-sensitive
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要