Chrome Extension
WeChat Mini Program
Use on ChatGLM

Comparative real-time study of cellular uptake of a formulated conjugated linolenic acid rich nano and conventional macro emulsions and their bioactivity in ex vivo models for parenteral applications.

Colloids and surfaces. B, Biointerfaces(2015)

Cited 19|Views16
No score
Abstract
The objective of the present study was to fabricate and monitor real-time, impact of a stable conjugated linolenic acid, α-eleostearic acid (ESA) rich nanoemulsion (NE) formulation (d < 200 nm) vis-à-vis ESA conventional emulsion (CE) system in ex vivo systems against both endogenous and exogenous reactive oxygen species (ROS). Accordingly, stable nanoemulsion formulation of ESA was engineered with the aid of bitter melon seed oil and non-toxic excipients. Morphology and particle size of the emulsion formulations were studied to validate stability. The real-time rapid uptake of the ESA NE and its increased prophylactic efficacy against induced endogenous and exogenous ROS in terms of cell viability and membrane integrity was evaluated flow-cytometrically and with fluorescence microscopic analysis of different primary cells. It was found that the fabricated non-toxic ESA NE had stable parameters (hydrodynamic mean diameter, particle size distribution and zeta potential) for over 12 weeks. Further, ESA NE at a concentration of ∼ 70 μM exhibited maximum efficacy in protecting cells from oxidative damage against both endogenous and exogenous ROS in lymphocytes and hepatocytes as compared to its corresponding presence in the CE formulation. This study provides a real-time empirical evidence on the influence of nano formulation in enhancing bioavailability and antioxidative properties of ESA.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined