MiR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of ZO-1, occludin and claudin-5.

Cellular signalling(2014)

引用 42|浏览7
暂无评分
摘要
The purposes of this study were to investigate the possible molecular mechanisms of miR-18a regulating the permeability of blood-tumor barrier (BTB) via down-regulated expression and distribution of runt-related transcription factor 1 (RUNX1). An in vitro BTB model was established with hCMEC/D3 cells and U87MG cells to obtain glioma vascular endothelial cells (GECs). The endogenous expressions of miR-18a and RUNX1 were converse in GECs. The overexpression of miR-18a significantly impaired the integrity and increased the permeability of BTB, which respectively were detected by TEER and HRP flux assays, accompanied by down-regulated mRNA and protein expressions and distributions of ZO-1, occludin and claudin-5 in GECs. Dual-luciferase reporter assay was carried out and revealed RUNX1 is a target gene of miR-18a. Meanwhile, mRNA and protein expressions and distribution of RUNX1 were downregulated by miR-18a. Most important, miR-18a and RUNX1 could reversely regulate the permeability of BTB as well as the expressions and distributions of ZO-1, occludin and claudin-5. Finally, chromatin immunoprecipitation verified that RUNX1 interacted with "TGGGGT" DNA sequence in promoter region of ZO-1, occludin and claudin-5 respectively. Taken together, our present study indicated that miR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of tight junction related proteins ZO-1, occludin and claudin-5, which would attract more attention to miR-18a and RUNX1 as potential targets of drug delivery across BTB and provide novel strategies for glioma treatment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要