Cytotoxicity and cellular uptake of ZnS:Mn nanocrystals biofunctionalized with chitosan and aminoacids.

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy(2015)

引用 10|浏览6
暂无评分
摘要
Highly luminescent, manganese doped, zinc sulphide (ZnS:Mn) nanocrystals biofunctionalized with chitosan and various aminoacids such as L-citrulline, L-arginine, L-serine, L-histidine and glycine were synthesized by chemical capping co-precipitation method at room temperature, which is a simple and cost effective technique. The synthesized nanocrystals were structurally characterized by TEM, XRD, EDXS and FT-IR spectroscopy techniques. They possess high colloidal stability with strong orange red photoluminescence emission at 598 ran. The intensity of orange red emission has been observed to be maximum in L-citrulline capped ZnS:Mn nanocrystals in which the emission at 420 nm is effectively quenched by surface passivation due to capping. Taking into consideration the prospects of these highly luminescent, bio-compatible ZnS:Mn nanocrystals in bio-imaging applications, cytotoxicity studies were conducted to identify the capping combination which would accomplish minimum toxic effects. ZnS:Mn nanocrystals biofunctionalized with chitosan, glycine, L-artginine, L-serine and L-histidine showed least toxicity up to 10 nM concentrations in mouse fibroblast L929 cells, which further confirms their cytocompatibility. Also the ZnS:Mn nanocrystals biofunctionalized with c-arginine showed maximum uptake in in vitro studies carried out in human embryonic kidney cells, HEK-293T, which shows the significant role of this particular amino acid in fetoplacental nutrition. The present study highlights the suitability of aminoacid conjugated ZnS:Mn nanocrystals, as promising candidates for biomedical applications. (C) 2014 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Nanocrystals,Biofunctionalized,Chitosan,Aminoacids,Cytotoxicity,Cellular uptake
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要