Direct reactivation of a coherent neocortical memory of context.

Neuron(2014)

Cited 280|Views24
No score
Abstract
Declarative memories are thought to be stored within anatomically distributed neuronal networks requiring the hippocampus; however, it is unclear how neocortical areas participate in memory at the time of encoding. Here, we use a c-fos-based genetic tagging system to selectively express the channelrhodopsin variant, ChEF, and optogenetically reactivate a specific neural ensemble in retrosplenial cortex (RSC) engaged by context fear conditioning. Artificial stimulation of RSC was sufficient to produce both context-specific behavior and downstream cellular activity commensurate with natural experience. Moreover, optogenetically but not contextually elicited responses were insensitive to hippocampal inactivation, suggesting that although the hippocampus is needed to coordinate activation by sensory cues, a higher-order cortical framework can independently subserve learned behavior, even shortly after learning.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined