Role of biomolecules on annulus fibrosus micromechanics: effect of enzymatic digestion on elastic and failure properties.

Journal of the Mechanical Behavior of Biomedical Materials(2014)

引用 27|浏览1
暂无评分
摘要
Uniaxial tension was applied to selectively digested single lamellar human cadaveric annulus fibrosus specimens to investigate the role of different biomolecules in annular biomechanics. Single layered and inter-lamellar annulus fibrosus samples were obtained from 10 isolated cadaveric lumbar intervertebral discs in one of four orientations: longitudinal, transverse, radial, and circumferential. Within each orientation the samples were subjected to a selective enzymatic digestion protocol with collagenase, elastase, chondroitinase ABC, or 1× Phosphate Buffered Saline. Uniaxial tensile tests were performed to failure at a strain rate of 0.005s−1. Failure stress and strain, and elastic moduli were compared among the digested conditions. The collagenase- and elastase-treated groups had the most significant effect on the mechanical properties among the orientation groups, decreasing the failure stress for both interlaminar and intralaminar groups. Collagenase-treated groups showed an increase in the failure strain following enzymatic digestion for the intralaminar groups and one interlaminar testing direction (circumferential). The chondroitinase ABC-treated group only had a significant impact on the single layer orientations, decreasing the failure stress and strain (intralaminar group). The digested properties described provide insights into the laminar mechanical behavior and the role of the molecular components to the annular mechanical behavior. Understanding annular mechanics may prove insightful in diagnosis, prevention and repair of debilitating intervertebral disc disorders and manufacturing of tissue-engineered annulus.
更多
查看译文
关键词
Annulus fibrosus,Intervertebral disc,Micromechanics,Spine,Enzymatic digestion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要