Chrome Extension
WeChat Mini Program
Use on ChatGLM

Deletion of the four phospholipid hydroperoxide glutathione peroxidase genes accelerates aging in Caenorhabditis elegans.

GENES TO CELLS(2014)

Cited 28|Views3
No score
Abstract
The glutathione peroxidase (GPx) family is a major antioxidant enzyme family that catalyzes the reduction of a variety of hydroperoxides. GPxs are divided into selenium- and nonselenium-containing GPxs. Because of their efficient antioxidant activity, which depends on the presence of the amino acid residue selenocysteine, selenium-containing GPxs have been the subject of many studies. However, the physiological roles of the nonselenium GPxs remain unclear. Here, we report that the deletion of phospholipid hydroperoxide glutathione peroxidase (PHGPx) homologues causes accelerated aging that leads to a shortened lifespan in Caenorhabditis elegans. PHGPx is an antioxidant enzyme that directly reduces the phospholipid hydroperoxides generated in biomembranes. The quadruple phgpx mutant gpx-1; gpx-2; gpx-6; gpx-7 developed normally, reached adulthood and reproduced as well as the wild type. However, a lifespan analysis showed that the quadruple phgpx mutant had a short maximum lifespan, with an age-related increase in its mortality rate. The intestine is the primary tissue expressing gpx-1, gpx-2, gpx-6 and gpx-7 in C. elegans, and the expression of gpx-6 is greatly enhanced under starvation conditions. These results suggest that the C. elegans PHGPx homologues have important functions in the regulation of aging, probably by reducing oxidative damage in the intestine.
More
Translated text
Key words
peroxidase,aging,genes
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined