Ab initio study of charge transfer between lithium and aromatic hydrocarbons. Can the results be directly transferred to the lithium-graphene interaction?

JOURNAL OF PHYSICAL CHEMISTRY A(2014)

引用 6|浏览3
暂无评分
摘要
We have used electronic density calculations to study neutral complexes of Li with aromatic hydrocarbons. The charge transferred between a Li atom and benzene, coronene, circumcoronene, and circumcircumcoronene has been studied by ab initio methods (at the HF and MP2 level). Toward this aim, the method of integrating electron density in two cuboid fragments of space was applied. One of the fragments was constructed so that it enclosed the bulk of the electron density of lithium; the second, the bulk of the electron density of hydrocarbon. It was found that for each complex two conformations were identified: the most stable with a greater vertical Li-hydrocarbon distance, on the order of 2.5 angstrom, and another of higher energy with a corresponding distance less than 2 A. In all cases the transfer of a fractional number, 0.1-0.3 electrons, between Li and hydrocarbon was found; however, the direction of the transfer was not the same in all complexes investigated. The structures of complexes of the first configuration could be represented as Li sigma-center dot center dot center dot AH(sigma+), whereas the opposite direction of charge transfer was found for complexes of the second configuration, with higher energy. The directions of the dipole moments in the complexes supported these conclusions because they directly measure the redistribution of electron density in a complex with respect to substrates.
更多
查看译文
关键词
lithium–graphene interaction,charge transfer,aromatic hydrocarbons
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要