Structure of the Small Dictyostelium discoideum Myosin Light Chain MlcB Provides Insights into MyoB IQ Motif Recognition

Journal of Biological Chemistry(2014)

Cited 3|Views1
No score
Abstract
Dictyostelium discoideum MyoB is a class I myosin involved in the formation and retraction of membrane projections, cortical tension generation, membrane recycling, and phagosome maturation. The MyoB-specific, single-lobe EF-hand light chain MlcB binds the sole IQ motif of MyoB with submicromolar affinity in the absence and presence of Ca2+. However, the structural features of this novel myosin light chain and its interaction with its cognate IQ motif remain uncharacterized. Here, we describe the NMR-derived solution structure of apoMlcB, which displays a globular four-helix bundle. Helix 1 adopts a unique orientation when compared with the apo states of the EF-hand calcium-binding proteins calmodulin, S100B, and calbindin D-9k. NMR-based chemical shift perturbation mapping identified a hydrophobic MyoB IQ binding surface that involves amino acid residues in helices I and IV and the functional N-terminal Ca2+ binding loop, a site that appears to be maintained when MlcB adopts the holo state. Complementary mutagenesis and binding studies indicated that residues Ile-701, Phe-705, and Trp-708 of the MyoB IQ motif are critical for recognition of MlcB, which together allowed the generation of a structural model of the apoMlcB-MyoB IQ complex. We conclude that the mode of IQ motif recognition by the novel single-lobe MlcB differs considerably from that of stereotypical bilobal light chains such as calmodulin.
More
Translated text
Key words
Calcium-binding Protein,Dictyostelium,Myosin,Protein Structure,Protein-Protein Interaction
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined