RAD50 phosphorylation promotes ATR downstream signaling and DNA restart following replication stress.

Human molecular genetics(2014)

引用 26|浏览10
暂无评分
摘要
The MRE11/RAD50/NBN (MRN) complex plays a key role in detecting DNA double-strand breaks, recruiting and activating ataxia-telangiectasia mutated and in processing the breaks. Members of this complex also act as adaptor molecules for downstream signaling to the cell cycle and other cellular processes. Somewhat more controversial are the results to support a role for MRN in the ataxia-telangiectasia and Rad3-related (ATR) activation and signaling. We provide evidence that RAD50 is required for ATR activation in mammalian cells in response to DNA replication stress. It is in turn phosphorylated at a specific site (S635) by ATR, which is required for ATR signaling through Chk1 and other downstream substrates. We find that RAD50 phosphorylation is essential for DNA replication restart by promoting loading of cohesin at these sites. We also demonstrate that replication stress-induced RAD50 phosphorylation is functionally significant for cell survival and cell cycle checkpoint activation. These results highlight the importance of the adaptor role for a member of the MRN complex in all aspects of the response to DNA replication stress.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要