Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regeneration in vivo.

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE(2017)

引用 57|浏览15
暂无评分
摘要
This study investigated the influence of pore sizes of poly(lactic-co-glycolic acid) (PLGA) scaffolds on the compressive strength of tissue-engineered biodiscs and selection of the best suitable pore size for cells to grow in vivo. PLGA scaffolds were fabricated by solvent casting/salt-leaching with pore sizes of 90-180, 180-250, 250-355 and 355-425 mu m. Nucleus pulposus (NP) cells were seeded on PLGA scaffolds with various pore sizes. Each sample was harvested at each time point, after retrieval of PLGA scaffolds seeded with NP cells, which were implanted into subcutaneous spaces in nude mice at 4 and 6 weeks. MTT assay, glycosaminoglycan (GAG) assay, haematoxylin and eosin (H&E) staining, safranin O staining and immunohistochemistry (for collagen type II) were performed at each time point. As the pores became smaller, the value of the compressive strength of the scaffold was increased. The group of scaffolds with pore sizes of 90-250 mu m showed better cell proliferation and ECM production. These results demonstrated that the compressive strength of the scaffold was improved while the scaffold had pore sizes in the range 90-250 mu m and good cell interconnectivity. Suitable space in the scaffold for cell viability is a key factor for cell metabolism. Copyright (c) 2014 John Wiley & Sons, Ltd.
更多
查看译文
关键词
nucleus pulposus,bio-disc,PLGA scaffold,pore size
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要