谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Adriamycin-induced nephropathy in rats: functional and cellular effects characterized by MRI.

Journal of magnetic resonance imaging : JMRI(2014)

引用 17|浏览10
暂无评分
摘要
PURPOSE:To assess with magnetic resonance imaging (MRI) adriamycin-induced nephropathy in living rats, an established model for proteinuric renal disease was used. MATERIALS AND METHODS:Functional information of contrast agent clearance was obtained with dynamic contrast-enhanced (DCE) imaging following intravenous Gd-DOTA administration. Perfusion data were obtained with a bolus tracking technique comprising intravenous injection of superparamagnetic iron oxide (SPIO) nanoparticles. Cellular information was derived from anatomical images acquired 24 hours after SPIO. Treatment with the transforming growth factor-β123 (TGF-β1,2,3 ) antibody, 1D11, started 1 week after adriamycin. Histology was performed at week 6 post-adriamycin. RESULTS:Tracer washout rates derived by DCE-MRI decreased by 65.5% with respect to baseline at week 6 post-adriamycin. The impaired kidney function agreed with glomerulopathy, nephropathy and fibrosis revealed histologically (picrosirius collagen staining in adriamycin-treated rats increased by 125.8% [P = 0.005] with respect to controls). Perfusion was reduced by 16.1%. Images acquired 24 hours after SPIO presented contrast changes that correlated inversely with the histologically determined iron content (R = -0.74, P = 2.6 × 10(-4) ). In adriamycin-challenged animals, iron was found in macrophages and in sclerotic tubuli, only in areas where macrophages were present. Treatment with 1D11 did not improve the adriamycin-induced renal injury. CONCLUSION:MRI provides longitudinal functional and cellular (macrophage infiltration) information that correlates with nephropathy development in adriamycin-challenged rats.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要