Chrome Extension
WeChat Mini Program
Use on ChatGLM

Monomeric Aβ1-42 and RAGE: key players in neuronal differentiation.

Neurobiology of aging(2014)

Cited 26|Views15
No score
Abstract
The aggregation of amyloid-β (Aβ) peptides plays a crucial role in the onset and progression of Alzheimer's disease. Monomeric form of Aβ, indeed, could exert a physiological role. Considering the anti-oligomerization property of all-trans retinoic acid (ATRA), the involvement of monomeric Aβ1-42 in ATRA-induced neuronal differentiation has been investigated. Four-day ATRA treatment increases β-secretase 1 (BACE1) level, Aβ1-42 production, and receptor for advanced glycation end-products (RAGE) expression. RAGE is a well-recognized receptor for Aβ, and the block of both RAGE and Aβ1-42 with specific antibodies strongly impairs neurite formation in ATRA-treated cells. The involvement of Aβ1-42 and RAGE in ATRA-induced morphologic changes has been confirmed treating undifferentiated cells with different molecular assemblies of peptide: 1 μM monomeric, but not oligomeric, Aβ1-42 increases RAGE expression and favors neurite elongation. The block of RAGE completely prevents this effect. Furthermore, our data underline the involvement of the RAGE-dependent adhesion molecule amphoterin-induced gene and open reading frame-1 as downstream effector of both ATRA and Aβ1-42. In conclusion, our findings identify a novel physiological role for monomeric Aβ1-42 and RAGE in neuronal differentiation.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined