Endothelin-1 mediated high glucose-induced epithelial–mesenchymal transition in renal tubular cells

Diabetes Research and Clinical Practice(2014)

Cited 18|Views7
No score
Abstract
The pathogenesis of interstitial fibrosis in diabetic nephropathy (DN) is an intractable problem without good therapy. Emerging evidence suggests that epithelial-mesenchymal transition (EMT) is an important mechanism for tubular epithelial cells undergoing profibrotic change in DN. Endothelin-1 (ET-1) is an important cytokine which can cause fibrogenesis and is reportedly involved in DN. However, the role of ET-1 in EMT in DN is unknown. The present study was designed to investigate the role of ET-1 in high glucose-induced EMT and the signaling pathway mediating the effect of ET-1 in renal tubular cells.Tubular epithelial cells (NRK52E) were treated with normal glucose (d-glucose 5.6mmol/L, NG), high glucose (30mmol/L, HG), high osmotic (d-glucose 5.6mmol/L+d-mannitol 24.4mmol/L), HG+ETA antagonist BQ123 (2μg/ml), ET-1, ET-1+ hypoxia inducible factor (HIF)-1α siRNA, CoCl2 (100μmol/L), CoCl2+HIF-1α siRNA or CoCl2+BQ123. The supernatant level of ET-1 was measured by ELISA and the expression of vimentin, E-cadherin and HIF-1α was detected by RT-PCR and western blot.The ET-1 level increased markedly in the supernatant of NRK52E incubated with HG. In NRK52E induced with HG or ET-1, the expression of vimentin was upregulated, whereas the expression of E-cadherin was downregulated. BQ123 attenuated HG- and CoCl2-induced EMT while HIF-1α siRNA did not affect ET-1 induced EMT.High glucose induced ET-1 production that mediated the EMT induced by high glucose in renal tubular epithelial cells, and HIF-1α acted as the upstream signal to regulate ET-1.
More
Translated text
Key words
Diabetic nephropathy,Hypoxia inducible factor,Fibrosis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined