Age-related changes to layer 3 pyramidal cells in the rhesus monkey visual cortex.

CEREBRAL CORTEX(2015)

引用 48|浏览40
暂无评分
摘要
The effects of normal aging on morphologic and electrophysiologic properties of layer 3 pyramidal neurons in rhesus monkey primary visual cortex (V1) were assessed with whole-cell, patch-clamp recordings in in vitro slices. In another cohort of monkeys, the ultrastructure of synapses in the layers 2-3 neuropil of V1 was assessed using electron microscopy. Distal apical dendritic branching complexity was reduced in aged neurons, as was the total spine density, due to specific loss of mushroom spines from the apical tree and of thin spines from the basal tree. There was also an age-related decrease in the numerical density of symmetric and asymmetric synapses. In contrast to these structural changes, intrinsic membrane, action potential (AP), and excitatory and inhibitory synaptic current properties were the same in aged and young neurons. Computational modeling using morphologic reconstructions predicts that reduced dendritic complexity leads to lower attenuation of voltage outward from the soma (e.g., backpropagating APs) in aged neurons. Importantly, none of the variables that changed with age differed in neurons from cognitively impaired versus unimpaired aged monkeys. In summary, there are age-related alterations to the structural properties of V1 neurons, but these are not associated with significant electrophysiologic changes or with cognitive decline.
更多
查看译文
关键词
computational modeling,dendritic spines,electron microscopy,slice electrophysiology,synapses
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要