Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species.

CHEMICAL RESEARCH IN TOXICOLOGY(2013)

引用 50|浏览16
暂无评分
摘要
Particulate matter (PM) is emitted during thermal decomposition of waste. During this process, aromatic compounds chemisorb to the surface of metal-oxide-containing PM, forming a surface-stabilized environmentally persistent free radical (EPFR). We hypothesized that EPFR-containing PM redox cycle to produce ROS and that this redox cycle is maintained in biological environments. To test our hypothesis, we incubated model EPFRs with the fluorescent probe dihydrorhodamine (DHR). Marked increases in DHR fluorescence were observed. Using a more specific assay, hydroxyl radicals ((OH)-O-center dot) were also detected, and their level was further increased by cotreatment with thiols or ascorbic acid (AA), known components of epithelial lining fluid. Next, we incubated our model EPFR in bronchoalveolar lavage fluid (BALF) or serum. Detection of EPFRs and (OH)-O-center dot verified that PM generate ROS in biological fluids. Moreover, incubation of pulmonary epithelial cells with EPFR-containing PM increased (OH)-O-center dot levels compared to those in PM lacking EPFRs. Finally, measurements of oxidant injury in neonatal rats exposed to EPFRs by inhalation suggested that EPFRs induce an oxidant injury within the lung lining fluid and that the lung responds by increasing antioxidant levels. In summary, our EPFR-containing PM redox cycle to produce ROS, and these ROS are maintained in biological fluids and environments. Moreover, these ROS may modulate toxic responses of PM in biological tissues such as the lung.
更多
查看译文
关键词
free radicals,oxidation reduction,reactive oxygen species,particulate matter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要