Construction of a Reactive Diblock Copolymer, Polyphosphoester-block-Poly(L-lactide), as a Versatile Framework for Functional Materials that are Capable of Full Degradation and Nanoscopic Assembly Formation.

ACS macro letters(2013)

Cited 34|Views3
No score
Abstract
The development of a diblock copolymer, polyphosphoester-block-poly(L-lactide), which has potential for being fully-degradable and biocompatible, was achieved by one-pot sequential ring-opening polymerizations (ROPs) of two cyclic monomers: alkyne-functionalized phospholane and L-lactide (LLA). A kinetic study of the polymerization in each step was investigated in a detailed manner by nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC), revealing living/controlled characteristics with narrow molecular weight distributions and a linear increase of molecular weights vs. monomer conversion and time. Subsequently, photo-induced thiol-yne "click" reactions with small molecule thiols bearing either carboxylic acid or amino groups afforded amphiphilic diblock copolymers with carboxylate or amino side-chain functionalities along the polyphosphoester segment of the diblock copolymer backbone. Finally, direct dissolution of the two different types of amphiphilic diblock copolymers in aqueous solutions yielded well-defined spherical micelles with corresponding negative or positive surface charges, respectively, as confirmed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential analyses.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined