Endogenous ATP involvement in mustard-oil-induced central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn).

Journal of neurophysiology(2005)

引用 0|浏览11
暂无评分
摘要
Central sensitization represents a sustained hypersensitive state of dorsal horn nociceptive neurons that can be evoked by peripheral inflammation or injury to nerves and tissues. It reflects neuroplastic changes such as increases in neuronal spontaneous activity, receptive field size, and responses to suprathreshold stimuli and a decrease in activation threshold. We recently demonstrated that purinergic receptor mechanisms in trigeminal subnucleus caudalis (Vc; medullary dorsal horn) are also involved in the initiation and maintenance of central sensitization in brain stem nociceptive neurons of trigeminal subnucleus oralis. The aim of the present study was to investigate whether endogenous ATP is involved in the development of central sensitization in Vc itself. The experiments were carried out on urethan/alpha-chloralose anesthetized and immobilized rats. Single neurons were recorded and identified as nociceptive-specific (NS) in the deep laminae of Vc. During continuous saline superfusion (0.6 ml/h it) over the caudal medulla, Vc neuronal central sensitization was readily induced by mustard oil application to the tooth pulp. However, this mustard-oil-induced central sensitization could be completely blocked by continuous intrathecal superfusion of the wide-spectrum P2X receptor antagonist pyridoxal-phosphate-6-azophenyl-2, 4-disulphonic acid tetra-sodium (33-100 microM) and by apyrase (an ectonucleotidase enzyme, 30 units/ml). Superfusion of the selective P2X1, P2X3 and P2X(2/3) receptor antagonist 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (6-638 microM) partially blocked the Vc central sensitization. The two P2X receptor antagonists did not significantly affect the baseline nociceptive properties of the Vc neurons. These findings implicate endogenous ATP as an important mediator contributing to the development of central sensitization in nociceptive neurons of the deep laminae of the dorsal horn.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要