A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat ( Triticum aestivum L.)

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik(2013)

引用 119|浏览12
暂无评分
摘要
Key message By comparing 195 varieties in eight trials, this study assesses nitrogen use efficiency improvement in high and low nitrogen conditions in European winter wheat over the last 25 years . Abstract In a context where European agriculture practices have to deal with environmental concerns and nitrogen (N) fertiliser cost, nitrogen use efficiency (NUE) has to be improved. This study assessed genetic progress in winter wheat ( Triticum aestivum L.) NUE. Two hundred and twenty-five European elite varieties were tested in four environments under two levels of N. Global genetic progress was assessed on additive genetic values and on genotype × N interaction, covering 25 years of European breeding. To avoid sampling bias, quality, precocity and plant height were added as covariates in the analyses when needed. Genotype × environment interactions were highly significant for all the traits studied to such an extent that no additive genetic effect was detected on N uptake. Genotype × N interactions were significant for yield, grain protein content (GPC), N concentration in straw, N utilisation, and NUE. Grain yield improvement (+0.45 % year −1 ) was independent of the N treatment. GPC was stable, thus grain nitrogen yield was improved (+0.39 % year −1 ). Genetic progress on N harvest index (+0.12 % year −1 ) and on N concentration in straw (−0.52 % year −1 ) possibly revealed improvement in N remobilisation. There has been an improvement of NUE additive genetic value (+0.33 % year −1 ) linked to better N utilisation (+0.20 % year −1 ). Improved yield stability was detected as a significant improvement of NUE in low compared to high N conditions. The application of these results to breeding programs is discussed.
更多
查看译文
关键词
Grain Yield,Additive Genetic Effect,Grain Protein Concentration,Thousand Kernel Weight,Genetic Progress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要