Trophic stimulation of articular chondrocytes by late-passage mesenchymal stem cells in coculture.

JOURNAL OF ORTHOPAEDIC RESEARCH(2013)

Cited 29|Views3
No score
Abstract
Coculture of mesenchymal stem cells (MSCs) with articular chondrocytes (ACs) increases glycosaminoglycan (GAG) accumulation compared to monoculture. MSCs might (1) differentiate into ACs (progenitor role) and/or (2) stimulate AC matrix metabolism (trophic role). MSCs lose the ability to undergo chondrogenesis after extended passaging. We hypothesized that MSCs act predominantly as progenitors, and that late-passage MSCs without chondrogenic potential would be unable to increase GAG in coculture. Early- and late-passage human MSCs (hMSCs) were grown in pellet monoculture under chondrogenic conditions and in pellet coculture with bovine ACs. Chondrogenesis was assessed with GAG quantification, safranin-O staining, and quantitative PCR (qPCR). Contributions of human and bovine cells were assessed with species-specific qPCR and human-specific immunostaining. Late-passage hMSCs did not undergo chondrogenesis in monoculture with chondrogenic stimuli or in coculture with ACs. Early-passage hMSCs underwent chondrogenesis only in response to chondrogenic stimuli. Coculture pellets in both cases accumulated as much GAG/DNA as monoculture AC pellets. Aggrecan transcription was not increased in coculture. Late-passage hMSCs that do not undergo chondrogenesis are capable of stimulating GAG accumulation in coculture with ACs. This supports a trophic effect of hMSCs on ACs. hMSCs may have therapeutic utility even after prolonged passaging. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 31:1936-1942, 2013
More
Translated text
Key words
coculture,mesenchymal stem cells,chondrogenesis,trophic
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined