MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer.

Neoplasia(2013)

引用 137|浏览14
暂无评分
摘要
MicroRNA-130b (miR-130b) is involved in several biologic processes; its role in colorectal tumorigenesis has not been addressed so far. Herein, we demonstrate that miR-130b up-regulation exhibits clinical relevance as it is linked to advanced colorectal cancers (CRCs), poor patients' prognosis, and molecular features of enhanced epithelial-mesenchymal transition (EMT) and angiogenesis. miR-130b high-expressing cells develop large, dedifferentiated, and vascularized tumors in mouse xenografts, features that are reverted by intratumor injection of a specific antisense RNA. In contrast, injection of the corresponding mimic in mouse xenografts from miR-130b low-expressing cells increases tumor growth and angiogenic potential while reduces the epithelial hallmarks. These biologic effects are reproduced in human CRC cell lines. We identify peroxisome proliferator-activated receptor γ (PPARγ) as an miR-130b direct target in CRC in vitro and in vivo. Notably, the effects of PPARγ gain- and loss-of-function phenocopy those due to miR-130b down-regulation or up-regulation, respectively, underscoring their biologic relevance. Furthermore, we provide mechanistic evidences that most of the miR-130b-dependent effects are due to PPARγ suppression that in turn deregulates PTEN, E-cadherin, Snail, and vascular endothelial growth factor, key mediators of cell proliferation, EMT, and angiogenesis. Since higher levels of miR-130b are found in advanced tumor stages (III–IV), we propose a novel role of the miR-130b-PPARγ axis in fostering the progression toward more invasive CRCs. Detection of onco-miR-130b and its association with PPARγ may be useful as a prognostic biomarker. Its targeting in vivo should be evaluated as a novel effective therapeutic tool against CRC.
更多
查看译文
关键词
micrornas,transcription factors,vascular endothelial growth factor a,ppar gamma,cadherins,cell proliferation,epithelial mesenchymal transition,down regulation,up regulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要