Dynamic investigation of interaction of biocompatible iron oxide nanoparticles with epithelial cells for biomedical applications.

JOURNAL OF BIOMEDICAL NANOTECHNOLOGY(2013)

引用 14|浏览7
暂无评分
摘要
Magnetic nanoparticles have emerged as important players in current research in modern medicine since they can be used in medicine for diagnosis and/or therapeutic treatment of diseases. Among many therapeutic applications of iron-based nanoparticles, drug delivery and photothermal therapy are of particular interest. At cellular level their uptake has been studied and the mechanism by which nanoparticles enter into the cell has important implication not only for their fate but also for their impact on the biological systems. We present here a dynamic investigation of interaction of biocompatible iron oxide nanoparticles coated with L-3,4-dihydroxyphenylalanine and labeled with tetra-methylrhodamine-5/6-isothiocyanate with lung epithelial cells. Our data show that after macropinocytosis-mediated internalization, nanoparticles in form of vesicles approach the nucleus and converge in the more acidic compartments of the cells in a microtubule-dependent manner. During progression the nanoparticles aggregate. Finally, we have demonstrated that a converging laser radiation on the cells, causes the increase in the local temperature and thus damages the cells, suggesting that these nanoparticles may be applied for photothermal therapy studies.
更多
查看译文
关键词
Iron Oxide Nanoparticles,Nanoparticles Uptake,Intracellular Trafficking,Photothermal Therapy,Nanomedicine,Biocompatibility,Macropynocitosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要