Robust superhydrophobic cotton fabric based on dual-sized silica particles with self-healing nature

Ting Li,Yi Peng, Jianlong Yang, Hang You

International Journal of Biological Macromolecules(2024)

Cited 0|Views2
No score
Abstract
Improving the durability of wear-resistant superhydrophobic surfaces is crucial for their practical use. To tackle this, research is now delving into self-healing superhydrophobic surfaces. In our study, we developed superhydrophobic cotton fabrics by embedding nano-silica particles, micro-silica powder, and polydimethylsiloxane (PDMS) using a dipping method. This innovative design grants the SiO2/PDMS cotton fabric remarkable superhydrophobicity, reflected by a water contact angle of 155°. Moreover, the PDMS was stored in the amorphous areas of cellulose of cotton fabrics, attaching to the fiber surface and playing a role in connecting micro-blocks and nano-particles. This causes a self-diffusion of PDMS molecules in these fabrics, allowing the surface to regain its superhydrophobicity even after abrasion damage. Impressively, this wear-resistant property can be renewed at least 8 times, showcasing the fabric's resilience. Moreover, these superhydrophobic cotton fabrics exhibit outstanding self-cleaning abilities and repel various substances such as blood, milk, cola, and tea. This resilience, coupled with its simplicity, low cost-effectiveness, and eco-friendliness, makes this coating highly promising for applications across construction, chemical, and medical fields. Our study also delves into understanding the self-healing mechanism of the SiO2/PDMS cotton fabric, offering insights into their long-term performance and potential advancements in this field.
More
Translated text
Key words
Superhydrophobic,Self-cleaning,Self-healing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined