Engineered biosynthesis of disaccharide-modified polyene macrolides.

Applied and environmental microbiology(2013)

Cited 14|Views2
No score
Abstract
Recent work has uncovered genes for two glycosyltransferases that are thought to catalyze mannosylation of mycosaminyl sugars of polyene macrolides. These two genes are nypY from Pseudonocardia sp. strain P1 and pegA from Actinoplanes caeruleus. Here we analyze these genes by heterologous expression in various strains of Streptomyces nodosus, producer of amphotericins, and in Streptomyces albidoflavus, which produces candicidins. The NypY glycosyltransferase converted amphotericins A and B and 7-oxo-amphotericin B to disaccharide-modified forms in vivo. The enzyme did not act on amphotericin analogs lacking exocyclic carboxyl or mycosamine amino groups. Both NypY and PegA acted on candicidins. This work confirms the functions of these glycosyltransferases and provides insights into their acceptor substrate tolerance. Disaccharide-modified polyenes may have potential as less toxic antibiotics.
More
Translated text
Key words
biosynthesis,disaccharide-modified
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined