Intracortical excitatory and thalamocortical boutons are intact in primary auditory cortex in schizophrenia.

Schizophrenia research(2013)

引用 23|浏览4
暂无评分
摘要
Schizophrenia is associated with auditory processing impairments that could arise as a result of primary auditory cortex excitatory circuit pathology. We have previously reported a deficit in dendritic spine density in deep layer 3 of primary auditory cortex in subjects with schizophrenia. As boutons and spines can be structurally and functionally co-regulated, we asked whether the densities of intracortical excitatory or thalamocortical presynaptic boutons are also reduced. We studied 2 cohorts of subjects with schizophrenia and matched controls, comprising 27 subject pairs, and assessed the density, number, and within-bouton vesicular glutamate transporter (VGluT) protein level of intracortical excitatory (VGluT1-immunoreactive) and thalamocortical (VGluT2-immunoreactive) boutons in deep layer 3 of primary auditory cortex using quantitative confocal microscopy and stereologic sampling methods. We found that VGluT1- and VGluT2-immunoreactive puncta densities and numbers were not altered in deep layer 3 of primary auditory cortex of subjects with schizophrenia. Our results indicate that reduced dendritic spine density in primary auditory cortex of subjects with schizophrenia is not matched by a corresponding reduction in excitatory bouton density. This suggests excitatory boutons in primary auditory cortex in schizophrenia may synapse with structures other than spines, such as dendritic shafts, with greater frequency. The discrepancy between dendritic spine reduction and excitatory bouton preservation may contribute to functional impairments of the primary auditory cortex in subjects with schizophrenia.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要