Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension.

JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY(2013)

引用 81|浏览20
暂无评分
摘要
Inherited and acquired disorders that enhance the activity of transporters mediating renal tubular Na+ reabsorption are well established causes of hypertension. It is unclear, however, whether primary activation of an Na+-independent chloride transporter in the kidney can also play a pathogenic role in this disease. Here, mice overexpressing the chloride transporter pendrin in intercalated cells of the distal nephron (Tg(B1-hPDS) mice) displayed increased renal absorption of chloride. Compared with normal mice, these transgenic mice exhibited a delayed increase in urinary NaCl and ultimately, developed hypertension when exposed to a high-salt diet. Administering the same sodium intake as NaHCO3 instead of NaCl did not significantly alter BP, indicating that the hypertension in the transgenic mice was chloride-sensitive. Moreover, excessive chloride absorption by pendrin drove parallel absorption of sodium through the epithelial sodium channel ENaC and the sodium-driven chloride/bicarbonate exchanger (Ndcbe), despite an appropriate downregulation of these sodium transporters in response to the expanded vascular volume and hypertension. In summary, chloride transport in the distal nephron can play a primary role in driving NaCl transport in this part of the kidney, and a primary abnormality in renal chloride transport can provoke arterial hypertension. Thus, we conclude that the chloride/bicarbonate exchanger pendrin plays a major role in controlling net NaCl absorption, thereby influencing BP under conditions of high salt intake.
更多
查看译文
关键词
immunohistochemistry,ion transport,sodium chloride,blood pressure,membrane transport proteins
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要