Performance Of The Experimental Resins And Dental Nanocomposites At Varying Deformation Rates

JOURNAL OF INVESTIGATIVE AND CLINICAL DENTISTRY(2014)

引用 6|浏览2
暂无评分
摘要
Aim: The aim of the present study was to evaluate the bi-axial flexural strength of experimental unfilled resins and resin-based composites at varying deformation rates following 1-week dry, 1-week wet, and 13-week wet storage regimes.Methods: A total of 270 disc-shaped specimens (12 mm diameter, 1 mm thickness) of either unfilled resins or experimental resin-based composites comprising of three groups (n = 90) were fabricated. Three groups of each unfilled resin and resin-based composites (n = 90) were stored for 1 week under dry conditions, and at 1 and 13 weeks under wet conditions (37 +/- 1 degrees C) before testing. The bi-axial flexural strength of each unfilled resin and resin-based composites group was determined at a 0.1, 1, and 10 mm/min deformation rate (n = 30).Results: The unfilled resins revealed a deformation rate dependence following all storage regimes; however, the addition of fillers in the unfilled resins modified such reliance following the 1-week dry and 13-week wet storage regimes. In contrast, a lower bi-axial flexural strength of the 1-week wet resin-based composites specimens at a 0.1 mm/min deformation rate was identified.Conclusion: A lower bi-axial flexural strength of the 1-week wet resin-based composites specimens at a low deformation rate suggests that premature failure of resin-based composites restorations might occur in patients with parafunctional habits, such as bruxism.
更多
查看译文
关键词
bi-axial flexure strength, deformation rate, resin-based composite, storage regime, unfilled resin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要