Linking cell fate, trajectory choice, and target selection: genetic analysis of Sema-2b in olfactory axon targeting.

Neuron(2013)

Cited 46|Views3
No score
Abstract
Neural circuit assembly requires selection of specific cell fates, axonal trajectories, and synaptic targets. By analyzing the function of a secreted semaphorin, Sema-2b, in Drosophila olfactory receptor neuron (ORN) development, we identified multiple molecular and cellular mechanisms that link these events. Notch signaling limits Sema-2b expression to ventromedial ORN classes, within which Sema-2b cell-autonomously sensitizes ORN axons to external semaphorins. Central-brain-derived Sema-2a and Sema-2b attract Sema-2b-expressing axons to the ventromedial trajectory. In addition, Sema-2b/PlexB-mediated axon-axon interactions consolidate this trajectory choice and promote ventromedial axon-bundle formation. Selecting the correct developmental trajectory is ultimately essential for proper target choice. These findings demonstrate that Sema-2b couples ORN axon guidance to postsynaptic target neuron dendrite patterning well before the final target selection phase, and exemplify how a single guidance molecule can drive consecutive stages of neural circuit assembly with the help of sophisticated spatial and temporal regulation.
More
Translated text
Key words
growth cones,semaphorins
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined