Chrome Extension
WeChat Mini Program
Use on ChatGLM

Electronic And Optical Properties Of Nanocrystalline Wo3 Thin Films Studied By Optical Spectroscopy And Density Functional Calculations

JOURNAL OF PHYSICS-CONDENSED MATTER(2013)

Cited 57|Views9
No score
Abstract
The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (P-tot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low P-tot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies E-g approximate to 3.1 eV, which increase with increasing P-tot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic delta-WO3, and monoclinic gamma- and epsilon-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The delta-WO3 and gamma-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that E-g in epsilon-WO3 is higher than in the delta-WO3 and gamma-WO3 phases, which provides an explanation for the P-tot dependence of the optical data.
More
Translated text
Key words
physical sciences
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined