Launching spiking ligands into a protein-protein interface: a promising strategy to destabilize and break interface formation in a tRNA modifying enzyme.

ACS chemical biology(2013)

引用 20|浏览16
暂无评分
摘要
Apart from competitive active-site inhibition of protein function, perturbance of protein-protein interactions by small molecules in oligodomain enzymes opens new perspectives for innovative therapeutics. tRNA-guanine transglycosylase (TGT), a potential target to treat shigellosis, is active only as the homodimer. Consequently, disruption of the dimer interface by small molecules provides a novel inhibition mode. A special feature of this enzyme is the short distance between active site and rim of the dimer interface. This suggests design of expanded active-site inhibitors decorated with rigid, needle-type substituents to spike into potential hot spots of the interaction interface. Ligands with attached ethinyl-type substituents have been synthesized and characterized by Kd measurements, crystallography, noncovalent mass spectrometry, and computer simulations. In contrast to previously determined crystal structures with nonextended active-site inhibitors, a well-defined loop-helix motif, involved in several contacts across the dimer interface, falls apart and suggests enhanced flexibility once the spiking ligands are bound. Mass spectrometry indicates significant destabilization but not full disruption of the complexed TGT homodimer in solution. As directed interactions of the loop-helix motif obviously do not determine dimer stability, a structurally conserved hydrophobic patch composed of several aromatic amino acids is suggested as interaction hot spot. The residues of this patch reside on a structurally highly conserved helix-turn-helix motif, which remains unaffected by the bound spiking ligands. Nevertheless, it is shielded from solvent access by the loop-helix motif that becomes perturbed upon binding of the spiking ligands, which serves as a possible explanation for reduced interface stability.
更多
查看译文
关键词
spiking ligands,protein–protein interface,trna modifying enzyme,break interface formation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要