Retinal morphological and functional changes in an animal model of retinitis pigmentosa.

VISUAL NEUROSCIENCE(2013)

Cited 20|Views2
No score
Abstract
The P23H-1 transgenic rat carries a mutated mouse opsin gene, in addition to endogenous opsin genes, and undergoes progressive photoreceptor loss that is generally characteristic of human autosomal dominant retinitis pigmentosa (RP). Here, we examined morphological changes correlated with visual function that is comparable to clinical application in the pigmented P23H-1 rat retina as photoreceptor degeneration progressed. We found that rod function was compromised as early as postnatal day 28 and was a good indicator for tracking retinal degeneration. Cone function was normal and did not change until the thickness of the photoreceptor layer was reduced by 75%. Similar to the threshold versus intensity curves used to evaluate vision of RP patients, light-adaptation curves showed that cone thresholds depended on the number of remaining functioning cones, but not on its length of outer segments (OS). By 1 year of age, both rod and cone functions were significantly compromised. Correlating with early abnormal rod function, rods and related secondary neurons also underwent progressive degeneration, including shortening of inner and OS of photoreceptors, loss of rod bipolar and horizontal cell dendrites, thickening of the outer Muller cell processes, and reduced density of pre- and postsynaptic markers. Similar early morphological modifications were also observed in cones and their related secondary neurons. However, cone function was maintained at nearly normal level for a long period. The dramatic loss of rods at late stage of degeneration may contribute to the dysfunction of cones. Attention has to be focused on preserving cone function and identifying factors that damage cones when therapeutic regimes are applied to treat retinal degeneration. As such, these findings provide a foundation for future studies involving treatments to counter photoreceptor loss.
More
Translated text
Key words
P23H mutation,Retinitis pigmentosa,Retinal degeneration,Rod and cone,Visual function
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined