Chrome Extension
WeChat Mini Program
Use on ChatGLM

On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells.

NEURO-ONCOLOGY(2013)

Cited 88|Views14
No score
Abstract
Background. Glioblastoma multiforme (GBM) is characterized by an aggressive clinical course, therapeutic resistance, and striking molecular heterogeneity. GBM-derived brain tumor stem cells (BTSCs) closely model this molecular heterogeneity and likely have a key role in tumor recurrence and therapeutic resistance. Emerging evidence indicates that Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 is an important mediator of tumor cell survival, growth, and invasion in a large group of GBM. Here, we used a large set of molecularly heterogeneous BTSCs to evaluate the translational potential of JAK2/STAT3 therapeutics. Methods. BTSCs were cultured from GBM patients and MGMT promoter methylation, and the mutation statuses of EGFR, PTEN, and TP53 were determined. Endogenous JAK2/STAT3 activity. was assessed in human GBM tissue, BTSCs, and orthotopic xenografts by immunohistochemistry and Western blotting. STAT3 short hairpin (sh)RNA, cucurbitacin-I, and WP1066 were used to inhibit JAK2/STAT3 activity in vitro and in vivo. Results. The JAK2/STAT3 pathway was demonstrated to be highly activated in human GBM, molecularly heterogeneous BTSCs derived from these tumors, and BTSC xenografts. STAT3 shRNA knockdown or cucurbitacin-I and WP1066 administration resulted in on-target JAK2/STAT3 inhibition and dramatically reduced BTSC survival regardless of endogenous MGMT promoter methylation or EGFR, PTEN, and TPS3 mutational status. BTSC orthotopic xenografts maintained the high levels of activated JAK2/STAT3 seen in their parent human tumors. Intraperitoneal WP1066 reduced intratumoral JAK2/STAT3 activity and prolonged animal survival. Conclusion. Our study demonstrates the in vitro and in vivo efficacy of on-target JAK2/STAT3 inhibition in heterogeneous BTSC lines that closely emulate the genomic and tumorigenic characteristics of human GBM.
More
Translated text
Key words
JAK2/STAT3,brain tumor stem cells,glioblastoma,molecular therapeutics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined