Functional effects of SDF-1α on a CD44(+) CXCR4(+) squamous cell carcinoma cell line as a model for interactions in the cancer stem cell niche.

ONCOLOGY REPORTS(2013)

引用 24|浏览6
暂无评分
摘要
Stromal cell-derived factor-1 alpha (SDF-1 alpha), also known as CXCL12, has variable effects on a plurality of cells. It is known to have selective effects on cell migration, morphology, survival and cell homing. As such the SDF-1-CXCR4 axis is postulated to be a crucial key pathway in the interaction between (cancer) stem cells and their surrounding supportive cells, the so-called (cancer) stem cell niche. We evaluated the expression of CD44 as a cancer stem cell (CSC) marker and the expression of CXCR4 in the head and neck squamous cell carcinoma (HNSCC) cell line UM-SCC 11A. In addition, we monitored proliferation, formation of podia and migration of UM-SCC 11A cells under the influence of SDF-1 alpha. Whereas SDF-1 alpha induced the formation of podia of CD44(+) CXCR4(+) UM-SCC 11A cells in a dose-dependent manner and the maximum number of cells exhibiting the formation of podia was observed under the influence of 10 ng/ml SDF-1 alpha (P=5.3x10(-6)), the highest number of migrating cells was noted using a concentration of 100 ng/ml (P=0.027). Proliferation and survival were not affected by SDF-1 alpha. We showed that UM-SCC 11A cells could be a target for SDF-1 alpha by CXCR4 expression and these cells also showed characteristics of HNSCC CSCs via CD44 expression. We demonstrated that SDF-1 alpha is a chemoattractant for UM-SCC 11A cells, and a maximum directed migration was achieved under the influence of 100 ng/ml SDF-1 alpha. Changes in cell morphology by presenting filopodia or a prominent uropod were noted following treatment of 10 ng/ml SDF-1 alpha. The SDF-CXCR4 axis may play a crucial role in the interaction between CSCs and their supportive cells in the CSC niche. Understanding these interactions may help to gain further insight into the pathophysiology of the progression and recurrence of malignant diseases and thus help to develop novel strategies for therapy.
更多
查看译文
关键词
head and neck squamous cell carcinoma,cancer stem cell,stromal cell-derived factor,CXCL12,CXCR4,cancer stem cell niche
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要