A comprehensive and suitable method for determining major ions from atmospheric particulate matter matrices.

Journal of Chromatography A(2012)

引用 26|浏览3
暂无评分
摘要
The present study proposes an analytical methodology that employs ion chromatography-conductivity detection for simultaneous quantification of inorganic (F(-), Cl(-), NO(3)(-), SO(4)(2-), and PO(3)(-)), monocarboxylate (HCOO(-), CH(3)COO(-), propionate, n-butyrate, lactate, and pyruvate), dicarboxylate (oxalate and succinate), and tricarboxylate anions (citrate), as well as crustal cations (Li(+), Na(+), K(+), NH(4)(+), Ca(2+), Mg(2+)) at low pgm(-3) range in airborne particle samples in one single run. The optimized conditions for anions were as follows: 0.6 mmol L(-1) KOH for 0-14 min, 0.6-15 mmol L(-1) KOH 14-20 min, 15-38 mmol L(-1) KOH during 20-32 min and finally returned to 0.6 mmol L(-1) for a period of 3 min, thereafter the eluent flow rate was 0.38 mL min(-1). Similarly, for cations, isocratic elution was adjusted to 0.36 mL min(-1) at 17.5 mmol L(-1) H(2)SO(4). LOD ranged 3.0-130 pgm(-3) and LOQ was within 10-400 pgm(-3) (Li(+) and PO(4)(3-), respectively) as well as recoveries ranged 89% (Ca(2+)) to 120% (Li(+)). Major ions were successfully determined in real PM1 and PM2.5 samples. The method used here was found to be a comprehensive, simple, cheap and reliable procedure for studying ions in particulate matter (PM) samples even those from remote areas or near ecosystem natural conditions.
更多
查看译文
关键词
Major ions,Water soluble species,Water soluble organic compounds,Ion chromatography,Atmospheric particulate matter,Environmental samples
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要