Digital Morphometry Of Rat Cerebellar Climbing Fibers Reveals Distinct Branch And Bouton Types

JOURNAL OF NEUROSCIENCE(2012)

引用 19|浏览12
暂无评分
摘要
Cerebellar climbing fibers (CFs) provide powerful excitatory input to Purkinje cells (PCs), which represent the sole output of the cerebellar cortex. Recent discoveries suggest that CFs have information-rich signaling properties important for cerebellar function, beyond eliciting the well known all-or-none PC complex spike. CF morphology has not been quantitatively analyzed at the same level of detail as its biophysical properties. Because morphology can greatly influence function, including the capacity for information processing, it is important to understand CF branching structure in detail, as well as its variability across and within arbors. We have digitally reconstructed 68 rat CFs labeled using biotinylated dextran amine injected into the inferior olive and comprehensively quantified their morphology. CF structure was considerably diverse even within the same anatomical regions. Distinctly identifiable primary, tendril, and distal branches could be operationally differentiated by the relative size of the subtrees at their initial bifurcations. Additionally, primary branches were more directed toward the cortical surface and had fewer and less pronounced synaptic boutons, suggesting they prioritize efficient and reliable signal propagation. Tendril and distal branches were spatially segregated and bouton dense, indicating specialization in signal transmission. Furthermore, CFs systematically targeted molecular layer interneuron cell bodies, especially at terminal boutons, potentially instantiating feedforward inhibition on PCs. This study offers the most detailed and comprehensive characterization of CF morphology to date. The reconstruction files and metadata are publicly distributed at NeuroMorpho.org.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要