Chrome Extension
WeChat Mini Program
Use on ChatGLM

Morphology and nanostructure of CeO2(111) surfaces of single crystals and Si(111) supported ceria films.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2012)

Cited 26|Views10
No score
Abstract
The surface morphology of CeO2(111) single crystals and silicon supported ceria films is investigated by non-contact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM) for various annealing conditions. Annealing bulk samples at 1100 K results in small terraces with rounded ledges and steps with predominantly one O-Ce-O triple layer height while annealing at 1200 K produces well-ordered straight step edges in a hexagonal motif and step bunching. The morphology and topographic details of films are similar, however, films are destroyed upon heating them above 1100 K. KPFM images exhibit uniform terraces on a single crystal surface when the crystal is slowly cooled down, whereas rapid cooling results in a significant inhomogeneity of the surface potential. For films exhibiting large terraces, significant inhomogeneity in the KPFM signal is found even for best possible preparation conditions. Applying X-ray photoelectron spectroscopy (XPS), we find a significant contamination of the bulk ceria sample with fluorine while a possible fluorine contamination of the ceria film is below the XPS detection threshold. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) reveals an accumulation of fluorine within the first 5 nm below the surface of the bulk sample and a small concentration throughout the crystal.
More
Translated text
Key words
Metal-Support Interactions
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined