Rational Design Of An Immunoconjugate For Selective Knock-Down Of Leukemia-Specific E2a-Pbx1 Fusion Gene Expression In Human Pre-B Leukemia

INTEGRATIVE BIOLOGY(2013)

引用 16|浏览5
暂无评分
摘要
The t(1;19)(q23;p13) is one of the most common chromosomal translocations in acute lymphoblastic leukemia (ALL) and results in production of the transforming oncoprotein E2A-PBX1. Here we first report a novel, biomarker-guided biotherapy strategy for personalized treatment of t(1;19)(+) ALL. A supervised interrogation of the gene expression profiles of primary leukemic cells from a cohort of 207 children with high risk B-lineage ALL identified up-regulated CD19 gene expression as a biomarker for t(1;19)(+) ALL. A disulfide-linked immunoconjugate of a 5-amino-modified 24 mer phosphorothioate anti-sense E2A-PBX1 oligonucleotide (AON) with a mAb specific for a CD19 receptor (alpha CD19-AON) was prepared as a CD19-directed and leukemia-specific biotherapeutic agent against E2A-PBX1(+) B-lineage ALL. Treatment of E2A-PBX1(+) leukemia cells with low nanomolar concentrations of alpha CD19-AON resulted in selective depletion of E2A-PBX1 transcripts and caused apoptotic destruction and abrogation of clonogenic growth. Subcutaneously administered alpha CD19-AON at a total dose level of 93 nmol kg(-1) delivered over 14 days using a micro-osmotic pump more than doubled the leukemia-free survival time of SCID mice in a xenograft model of E2A-PBX1(+) human B-lineage ALL (82.0 +/- 1.9 days vs. 37.0 +/- 0.1 days, P < 0.0001). Both the AON moiety and the targeting CD19-specific mAb moiety were required for the in vitro as well as in vivo anti-leukemic activity of alpha CD19-AON. The observed in vitro and in vivo anti-leukemic potency of the alpha CD19-AON immunoconjugate provides the first preclinical proof-of-principle that t(1;19)(+) high risk B-lineage ALL can be treated with leukemia-specific biotherapeutic agents that knock-down E2A-PBX1 expression.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要