Tuning the primary reaction of channelrhodopsin-2 by imidazole, pH, and site-specific mutations.

Biophysical Journal(2012)

引用 27|浏览1
暂无评分
摘要
Femtosecond time-resolved absorption measurements were performed to investigate the influence of the pH, imidazole concentration, and point mutations on the isomerization process of Channelrhodopsin-2. Apart from the typical spectral characteristics of retinal isomerization, an additional absorption feature rises for the wild-type (wt) on a timescale from tens of ps to 1 ns within the spectral range of the photoproduct and is attributed to an equilibration between different K-intermediates. Remarkably, this absorption feature vanishes upon addition of imidazole or lowering the pH. In the latter case, the isomerization is dramatically slowed down, due to protonation of negatively charged amino acids within the retinal binding pocket, e.g., E123 and D253. Moreover, we investigated the influence of several point mutations within the retinal binding pocket E123T, E123D, C128T, and D156C. For E123T, the isomerization is retarded compared to wt and E123D, indicating that a negatively charged residue at this position functions as an effective catalyst in the isomerization process. In the case of the C128T mutant, all primary processes are slightly accelerated compared to the wt, whereas the isomerization dynamics for the D156C mutant is similar to wt after addition of imidazole.
更多
查看译文
关键词
absorption,mutation,binding sites,spectrum analysis,rhodopsin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要