An optimized duplex real-time PCR tool for sensitive detection of the quarantine oomycete Plasmopara halstedii in sunflower seeds.

PHYTOPATHOLOGY(2012)

Cited 25|Views10
No score
Abstract
Ioos, R., Fourrier, C., Wilson, V.. Webb, K., Schereffer, J.-L., and Tourvieille de Labrouhe, D. 2012. An optimized duplex real-time PCR tool for sensitive detection of the quarantine oomycete Plasmopara halstedii in sunflower seeds. Phytopathology 102:908-917. Plasmopara halstedii, the causal agent of downy mildew of sunflower, is an oomycete listed as a quarantine pathogen. This obligate parasite resides in a quiescent state in seeds of sunflower and can be spread from seed production areas to areas of crop production by international seed trade. To prevent the spread or the introduction of potentially new genotypes or fungicide-tolerant strains, an efficient method to detect P halstedii in sunflower seed is required. This work reports the optimization of a real-time detection tool that targets the pathogen within sunflower seeds, and provides statistically validated data for that tool. The tool proved to be specific and inclusive, based on computer simulation and in vitro assessments, and could detect as few as 45 copies of target DNA. A fully optimized DNA extraction protocol was also developed starting from a sample of 1,000 sunflower seeds, and enabled the detection of <1 infected seed/1,000 seeds. To ensure reliability of the results, a set of controls was used systematically during the assays, including a plant-specific probe used in a duplex quantitative polymerase chain reaction that enabled the assessment of the quality of each DNA extract.
More
Translated text
Key words
quarantine oomycete,sensitive detection,sunflower seeds,real-time
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined