Coupled activation and degradation of eEF2K regulates protein synthesis in response to genotoxic stress.

Flore Kruiswijk,Laurensia Yuniati, Roberto Magliozzi,Teck Yew Low, Ratna Lim, Renske Bolder,Shabaz Mohammed, Christopher G Proud,Albert J R Heck, Michele Pagano,Daniele Guardavaccaro

Science signaling(2012)

引用 83|浏览28
暂无评分
摘要
The kinase eEF2K [eukaryotic elongation factor 2 (eEF2) kinase] controls the rate of peptide chain elongation by phosphorylating eEF2, the protein that mediates the movement of the ribosome along the mRNA by promoting translocation of the transfer RNA from the A to the P site in the ribosome. eEF2K-mediated phosphorylation of eEF2 on threonine 56 (Thr⁵⁶) decreases its affinity for the ribosome, thereby inhibiting elongation. Here, we show that in response to genotoxic stress, eEF2K was activated by AMPK (adenosine monophosphate-activated protein kinase)-mediated phosphorylation on serine 398. Activated eEF2K phosphorylated eEF2 and induced a temporary ribosomal slowdown at the stage of elongation. Subsequently, during DNA damage checkpoint silencing, a process required to allow cell cycle reentry, eEF2K was degraded by the ubiquitin-proteasome system through the ubiquitin ligase SCF(βTrCP) (Skp1-Cul1-F-box protein, β-transducin repeat-containing protein) to enable rapid resumption of translation elongation. This event required autophosphorylation of eEF2K on a canonical βTrCP-binding domain. The inability to degrade eEF2K during checkpoint silencing caused sustained phosphorylation of eEF2 on Thr⁵⁶ and delayed the resumption of translation elongation. Our study therefore establishes a link between DNA damage signaling and translation elongation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要