谷歌Chrome浏览器插件
订阅小程序
在清言上使用

FdhTU-modulated formate dehydrogenase expression and electron donor availability enhance recovery of Campylobacter jejuni following host cell infection.

JOURNAL OF BACTERIOLOGY(2012)

引用 27|浏览8
暂无评分
摘要
Campylobacter jejuni is a food-borne bacterial pathogen that colonizes the intestinal tract and causes severe gastroenteritis. Interaction with host epithelial cells is thought to enhance severity of disease, and the ability of C. jejuni to modulate its metabolism in different in vivo and environmental niches contributes to its success as a pathogen. A C. jejuni operon comprising two genes that we designated fdhT (CJJ81176_1492) and fdhU (CJJ81176_1493) is conserved in many bacterial species. Deletion of fdhT or fdhU in C. jejuni resulted in apparent defects in adherence and/or invasion of Caco-2 epithelial cells when assessed by CFU enumeration on standard Mueller-Hinton agar. However, fluorescence microscopy indicated that each mutant invaded cells at wild-type levels, instead suggesting roles for FdhTU in either intracellular survival or postinvasion recovery. The loss of fdhU caused reduced mRNA levels of formate dehydrogenase (FDH) genes and a severe defect in FDH activity. Cell infection phenotypes of a mutant deleted for the FdhA subunit of FDH and an Delta fdhU Delta fdhA double mutant were similar to those of a Delta fdhU mutant, which likewise suggested that FdhU and FdhA function in the same pathway. Cell infection assays followed by CFU enumeration on plates supplemented with sodium sulfite abolished the Delta fdhU and Delta fdhA mutant defects and resulted in significantly enhanced recovery of all strains, including wild type, at the invasion and intracellular survival time points. Collectively, our data indicate that FdhTU and FDH are required for optimal recovery following cell infection and suggest that C. jejuni alters its metabolic potential in the intracellular environment.
更多
查看译文
关键词
caco 2 cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要