Spatio-Temporal Validation of AIRS CO2 Observations Using GAW, HIPPO and TCCON.

REMOTE SENSING(2020)

Cited 6|Views3
No score
Abstract
Carbon dioxide (CO2) is a significant atmospheric greenhouse gas and its concentrations can be observed by in situ surface stations, aircraft flights and satellite sensors. This paper investigated the ability of the CO2 satellite observations to monitor, analyze and predict the horizontal and vertical distribution of atmospheric CO2 concentration at global scales. CO2 observations retrieved by an Atmospheric Infrared Sounder (AIRS) were inter-compared with the Global Atmosphere Watch Program (GAW) and HIAPER Pole-to-Pole Observations (HIPPOs), with reference to the measurements obtained using high-resolution ground-based Fourier Transform Spectrometers (FTS) in the Total Carbon Column Observing Network (TCCON) from near-surface level to the mid-to-high troposphere. After vertically integrating the AIRS-retrieved values with the column averaging kernels of TCCON measurements, the AIRS observations are spatio-temporally compared with HIPPO-integrated profiles in the mid-to-high troposphere. Five selected GAW stations are used for comparisons with TCCON sites near the surface of the Earth. The results of AIRS, TCCON (5-6 km), GAW and TCCON (1 km) CO2 measurements from 2007 to 2013 are compared, analyzed and discussed at their respective altitudes. The outcomes indicate that the difference of about 3.0 ppmv between AIRS and GAW or other highly accurate in situ surface measurements is mainly due to the different vertical altitudes, rather than the errors in the AIRS. The study reported here also explores the potential of AIRS satellite observations for analyzing the spatial distribution and seasonal variation of CO2 concentration at global scales.
More
Translated text
Key words
spatio-temporal validation,dry-air mole fraction (XCO2),AIRS,GAW,HIPPO,TCCON
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined