Haloperidol and clozapine block formation of autophagolysosomes in rat primary neurons.

Neuroscience(2012)

Cited 40|Views3
No score
Abstract
Early intervention and maintenance treatment for schizophrenia patients may prolong the duration of exposure to antipsychotic agents; however, there have been few studies on the neurotoxicity of these agents. Here, we investigated the effects of antipsychotics on cell viability and autophagy in rat primary neurons. Cultured cortical neurons obtained from rat embryos were treated with various concentrations of haloperidol and clozapine, and the neuronal toxicity was assessed by measuring lactate dehydrogenase (LDH) activity and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Autophagosomes were quantitated by measuring the level of microtubule-associated protein 1A/1B-light chain 3 (LC3-II) by Western blot and immunofluorescence staining. Autophagic flux was assayed using bafilomycin A1 and GFP-mCherry-LC3 transfection. Haloperidol and clozapine decreased the viability of neurons in vitro in a concentration- and time-dependent manner. We also observed increased accumulation of autophagosomes after antipsychotic treatment. Using bafilomycin A1 and GFP-mCherry-LC3 transfection, we discovered that haloperidol and clozapine inhibited autophagosome turnover resulting in a dysfunctional autophagic process, including impaired lysosomal fusion. Together, these results suggest that haloperidol and clozapine negatively affect neuronal viability, possibly by blocking autophagolysosome formation.
More
Translated text
Key words
autophagy,clozapine,haloperidol,neurotoxicity,schizophrenia
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined