Novel peptide ligands of RGS4 from a focused one-bead, one-compound library.

CHEMICAL BIOLOGY & DRUG DESIGN(2008)

引用 33|浏览11
暂无评分
摘要
Regulators of G protein signaling accelerate GTP hydrolysis by G alpha subunits and profoundly inhibit signaling by G protein-coupled receptors. The distinct expression patterns and pathophysiologic regulation of regulators of G protein signaling proteins suggest that inhibitors may have therapeutic potential. We previously reported the design, mechanistic evaluation, and structure-activity relationships of a disulfide-containing cyclic peptide inhibitor of RGS4, YJ34 (Ac-Val-Lys-c[Cys-Thr-Gly-Ile-Cys]-Glu-NH2, S-S) (Roof et al., Chem Biol Drug Des, 67, 2006, 266). Using a focused onebead, one-compound peptide library that contains features known to be necessary for the activity of YJ34, we now identify peptides that bind to RGS4. Six peptides showed confirmed binding to RGS4 by flow cytometry. Two analogs of peptide 2 (Gly-Thr-c[Cys-Phe-Gly-Thr-Cys]-Trp-NH2, S-S with a free or acetylated IV-terminus) inhibited RGS4-stimulated G(alpha o) GTPase activity at 25-50 mu m. They selectively inhibit RGS4 but not RGS7, RGS16, and RGS19. Their inhibition of RGS4 does not depend on cysteine-modification of RGS4, as they do not lose activity when all cysteines are removed from RGS4. Peptide 2 has been modeled to fit in the same binding pocket predicted for YJ34 but in the reverse orientation.
更多
查看译文
关键词
focused library,one-bead one-compound library,protein-protein interaction inhibitors,regulators of G-protein signaling,structure-activity relationship
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要