Chrome Extension
WeChat Mini Program
Use on ChatGLM

Caffeic acid disturbs monocyte adhesion onto cultured endothelial cells stimulated by adipokine resistin.

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY(2012)

Cited 22|Views6
No score
Abstract
Adipokines have been implicated in the pathogenesis of atherosclerosis via pro-inflammatory mechanisms contributing to insulin resistance. The adipokine resistin causes endothelium dysfunction, which plays an important role in sustaining atherogenesis. This study investigated whether resistin induced expression of cell adhesion molecules and integrins in endothelial cells and THP-1 monocytes and whether such induction was attenuated by 1-20 μM caffeic acid. Resistin enhanced endothelial expression of vascular cell adhesion molecule 1 (VCAM-1), intercellular cell adhesion molecule 1 (ICAM-1), and E-selectin and monocyte expression of β1, β2, and α4 integrins. The enhancement of these proteins was diminished by caffeic acid with reduced THP-1 cell adhesion on activated endothelium. Caffeic acid at ≤20 μM demoted resistin-stimulated interleukin 8 (IL-8) production responsible for ICAM-1 and β2 integrin induction. The endothelial up-regulation of IL-8 secretion by resistin entailed toll-like receptor 4 (TLR4) activation, but caffeic acid diminished IL-8 production and TLR4 induction. Furthermore, caffeic acid encumbered resistin-activated nuclear factor κB (NF-κB) signaling. These results demonstrate that caffeic acid blocked monocyte trafficking to resistin-activated endothelium via disturbing NF-κB signaling responsive to IL-8. Therefore, caffeic acid may have therapeutic potential in preventing obesity-associated atherosclerosis.
More
Translated text
Key words
atherosclerosis,caffeic acid,endothelial cells,monocytes,resistin
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined